Extremal Numbers of Cycles Revisited

نویسندگان

چکیده

We give a simple geometric interpretation of an algebraic construction Wenger that gives n-vertex graphs with no cycle length 4, 6, or 10 and close to the maximum number edges.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal graphs without 4-cycles

We prove an upper bound for the number of edges a C4-free graph on q 2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q. Let n be a positive integer and G a graph. We define ex(n,G) to be the largest number of edges possible in a graph on n vertices that does not contain G as a subgraph; we call a graph o...

متن کامل

Extremal Permutations in Routing Cycles

Let G be a graph whose vertices are labeled 1, . . . , n, and π be a permutation on [n] := {1, 2, . . . , n}. A pebble pi that is initially placed at the vertex i has destination π(i) for each i ∈ [n]. At each step, we choose a matching and swap the two pebbles on each of the edges. Let rt(G, π), the routing number for π, be the minimum number of steps necessary for the pebbles to reach their d...

متن کامل

Extremal graphs without three-cycles or four-cycles

We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three-cycles nor four-cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200.

متن کامل

Moore Graphs and Cycles Are Extremal Graphs for Convex Cycles

Let ρ(G) denote the number of convex cycles of a simple graph G of order n, size m, and girth 3 ≤ g ≤ n. It is proved that ρ(G) ≤ ng (m−n+ 1) and that equality holds if and only if G is an even cycle or a Moore graph. The equality also holds for a possible Moore graph of diameter 2 and degree 57 thus giving a new characterization of Moore graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Mathematical Monthly

سال: 2021

ISSN: ['1930-0972', '0002-9890']

DOI: https://doi.org/10.1080/00029890.2021.1886845